Crystal Structures and Molecular Conformations of Isoprenaline Hydrochloride and (S)-Isoprenaline Hydrogen (2R,3R)-Tartrate

Robert Kingsford-Adaboh, Eiichi Hayashi, Masao Haisa, and Setsuo Kashino* Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700 (Received June 2, 1993)

The crystal structures of racemic form of isoprenaline hydrochloride (I) and (S)-isoprenaline hydrogen (2R,3R)-tartrate (II) were determined by X-ray diffraction method. Among the related compounds I has the least extended phenethylamine chain with a gauche-gauche conformation. The side chain of II has the usually observed perpendicular-trans conformation. The conformations observed for I and II are consistent with the intermolecular hydrogen bonding. The observed conformations are close to either a global or local minimum estimated by MMP2.

Isoprenaline hydrochloride, [(3,4-dihydroxyphenyl)-2-hydroxyethyl|isopropylammonium chloride (I) finds an important use as drug in relieving and preventing attacks of bronchial asthma; it is prescribed for emphysematous bronchitis pneumosclerosis. 1) Similar drug action of I to adrenaline and dl isoprenaline sulphate dihydrate²⁾ has caused us to investigate the structural and conformational properties of I and (S)-isoprenaline hydrogen (2R,3R)-tartrate (II). The structural and conformational characteristics of these compounds and their neurotransmitter receptor-binding conformational requirements have been a focus of research for the past twenty years. Although literature is not lacking on preferred conformations on phenethylamines,^{3,4)} the need to analyse more data becomes apparent when some noted discrepancies between observed and calculated energy minima do occur.⁵⁾ On molecular structure and biological activity, Griffin and Duax⁶⁾ ask whether adrenaline hydrogen tartrate can be described as one of conformational 'outliers', since the conformation of the aromatic ring to the side chain deviates from the usual perpendicular. Investigation of the tartrate salt is of interest in relation to the molecular conformation of the cationic moiety in hydrophilic environment.

© 1993 The Chemical Society of Japan

In the present study, the observed and theoretical conformations that conform to energy minima of the title compounds are reported and discussed. The intermolecular hydrogen bonds in the crystalline state that are consistent with the observed conformation are commented. The observed conformations in I and II are compared to structurally similar catecholamines.

Experimental

X-Ray Structure Analysis. Experimental details and crystal data are listed in Table 1. Colorless crystals of I (TCI I 0260) and II (Adrich 18,881-6) were obtained by slow evaporation from 90% aqueous ethanol solution and an aqueous solution respectively. Intensity data for I and II were measured by the ω -2 θ scan technique on a Rigaku AFC-5R four-circle diffractometer with graphite monochromated Mo $K\alpha$ radiation (λ =0.71073 Å) at 298 K. The data were corrected for Lorentz and polarization effects.

The structure of I was solved by Patterson method. The non-H atoms were refined anisotropically and the H-atoms isotropically by full matrix least-squares method: $\Sigma w(|F_o| |F_{\rm c}|^2$ was minimized with $w = \sigma(F_{\rm o})^{-2}$. A correction for secondary extinction effect was applied with $I_{\rm corr} = I_{\rm o} (1 +$ $9.69 \times 10^{-7} I_{c}$).

The structure of II was solved by direct method $SIR,^{7)}$ and refined by block-diagonal least-squares

Fig. 1. The molecular structures with atomic numbering. Ellipsoids of 50% probability are drawn for the non-H atoms; the H atoms are represented as spheres equivalent to $B=1.0 \text{ Å}^2$. Hydrogen bonds within the asymmetric unit are shown by broken lines. (a) Racemic form of isoprenaline hydrochloride (I). Only the (R)-form is shown. (b) (S)-isoprenaline hydrogen (2R,3R)-tartrate (II).

Table 1. Experimental Details and Crystal Data

	I	II
	$C_{11}H_{18}NO_3^+\cdot Cl^-$	$C_{11}H_{18}NO_3^+ \cdot C_4H_5O_6^-$
$M_{ m r}$	247.72	361.35
Morpholgy	Plates	Plates
Size of specimen (l/mm)	$0.25{\times}0.23{\times}0.08$	$0.48{\times}0.38{\times}0.08$
Crystal system	Monoclinic	${\bf Orthorhombic}$
Space group	$P2_1/c$	$P2_12_12_1$
$a/ m \AA$	10.444(6)	10.546(3)
b/Å	10.767(5)	19.227(9)
c/Å	12.148(7)	8.137(6)
β̈́/°	$114.57(\grave{4})^{'}$	
$ \dot{V}/ m \AA^3$	1242(1)	1650(2)
$D_{\mathbf{x}}^{'}/\mathrm{Mg}\mathrm{m}^{-3}$	$1.3\overline{24}$	1.454
Z	4	4
F(000)	528	768
μ/cm^{-1}	2.97	1.13
Radiation	$\operatorname{Mo} K\alpha$	$\operatorname{Mo} K\alpha$
$2\theta_{ m max}/^{\circ}$	50	55
Range of h,k,l	$0 \le h \le 12$	$0 \le h \le 13$
	$0 \le k \le 12$	$0 \le k \le 24$
	$-14 \le l \le 14$	$-1 \le l \le 10$
Fluctuation of		
standard reflections/ $\%$	0.9	3.1
$R_{ m int}$	0.043	0.022
No. of unique	1336	1704
reflections used	$I_{ m o}{>}2\sigma(I_{ m o})$	$ F_{ m o} {>}2\sigma F_{ m o} $
No. of parameters	218	319
R/wR	0.055/0.036	0.042/0.046
S	1.45	1.12
$(\Delta/\sigma)_{ m max}$	0.24	0.47
$\Delta ho_{ m max}/\Delta ho_{ m min}/{ m e \AA^3}$	0.33/-0.28	0.16/-0.20

method: $\Sigma w(|F_{\rm o}|-|F_{\rm c}|)^2$ was minimized with $w=[\sigma(F_{\rm o})^2+0.0046|F_{\rm o}|+0.0004|F_{\rm o}|^2]^{-1}$. Anisotropic thermal parameters were adopted for non-H atoms, and H-atoms were refined isotropically. A correction for secondary extinction effect was applied with $I_{\rm corr}=I_{\rm o}(1+1.00\times10^{-6}I_{\rm c})$.

The atomic scattering factors were taken from the International Tables for X-Ray Crystallography.⁸⁾ Calculations were performed using the TEXSAN⁹⁾ at the X-Ray Laboratory of Okayama University, and by using HBLS-V and DAPH¹⁰⁾ and MOLCON¹¹⁾ at the Okayama University Computer Center.

Conformational Analysis. The conformational energy minimization was carried out using MMP2 program. The calculations were carried out on the isolated cations. The geometries obtained by the X-ray structure analyses were adopted for the minimization.

Results and Discussion

The final atomic parameters are listed in Table 2, and the bond lengths and angles in Table 3.¹³⁾ The molecular structures with atomic numbering are shown in Fig. 1. Selected torsion angles are given in Table 4. The molecular arrangements in the crystals are shown in Fig. 2. The geometry of the hydrogen bonds are listed in Table 5.

In I the isoprenalium cations related by a center of symmetry form a dimer through bifurcated hydrogen

bonds between N and phenolic oxygens O(1) and O(2). The dimeric unit is shown in Fig. 3. The catechol rings are overlapped with an interplanar distance of 3.336 Å. The dimeric units related by a c glide plane and by a twofold screw axis form a sheet parallel to the (200) plane [Fig. 2(a)]. The ammonium N and O(1) serves as hydrogen bond donor, and Cl accepts three hydrogen bonds (Table 5).

The catechol ring shows a distorted perpendicular conformation to the side chain as shown by τ_1 in Table 4. The corresponding values for the other related compounds show that their observed values range from 75 to 96° except adrenaline hydrogen tartrate. 14) A calculated local energy minimum for τ_1 occurs at 70°, which is close to the observed value in I. The conformation of the C(1)-C(7)-C(8)-N chain is gauche, τ_2 =60.9-(5)°, while for the other crystals show trans (Table 4). A calculated local minima for τ_2 of **I** occurs at 60 and 180° . However, the steric energy at 60° is estimated to be higher only by 0.4 kJ mol⁻¹ than at 180°, the height of the energy barrier being 14.6 kJ mol⁻¹. Thus, the two forms are interconvertible in solution at room temperature. A distorted perpendicular-gauche conformation is characterized by the pair of τ_1 and τ_2 for I. The relevance of this orientation to bioactivity in terms of acceptor-receptor binding requirement may be inter-

Table 2. Final Atomic Parameters with Their esd's in Parentheses

$$B_{\rm eq} = \left(8\pi^2/3\right) \sum_{i} \sum_{j} \mathbf{U}_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			i	j	
$\begin{array}{c} \mathrm{Cl} & 0.2451(1) & 0.0216(1) & 0.2380(1) & 4.32(6) \\ \mathrm{O}(1) & 0.6774(3) & 0.5426(3) & 0.6784(3) & 3.4(1) \\ \mathrm{O}(2) & 0.7843(3) & 0.5063(3) & 0.5217(3) & 3.6(1) \\ \mathrm{O}(3) & 0.4591(3) & 0.0953(3) & 0.6805(3) & 3.8(1) \\ \mathrm{N} & 0.2008(4) & 0.2315(4) & 0.3994(3) & 2.9(2) \\ \mathrm{C}(1) & 0.5138(4) & 0.2410(4) & 0.5510(4) & 2.5(2) \\ \mathrm{C}(2) & 0.5479(5) & 0.3474(4) & 0.6232(4) & 2.8(2) \\ \mathrm{C}(3) & 0.6392(4) & 0.4365(4) & 0.6125(3) & 2.4(2) \\ \mathrm{C}(4) & 0.6961(4) & 0.4161(4) & 0.5284(3) & 2.6(2) \\ \mathrm{C}(5) & 0.6632(5) & 0.3110(4) & 0.4577(4) & 2.7(2) \\ \mathrm{C}(6) & 0.5715(5) & 0.2242(4) & 0.4693(4) & 2.7(2) \\ \mathrm{C}(7) & 0.4151(4) & 0.1439(4) & 0.5613(4) & 3.0(2) \\ \mathrm{C}(8) & 0.2664(5) & 0.1886(5) & 0.5284(4) & 3.3(2) \\ \mathrm{C}(9) & 0.0439(5) & 0.2585(5) & 0.3448(5) & 4.1(2) \\ \mathrm{C}(10) & -0.0377(7) & 0.1501(8) & 0.3580(7) & 6.2(4) \\ \mathrm{C}(11) & 0.0029(7) & 0.2947(7) & 0.2151(6) & 5.6(3) \\ \textbf{II} \\ \hline O(1) & 0.4761(2) & 0.3098(1) & -0.0479(3) & 3.6(1) \\ \mathrm{O}(2) & 0.6329(2) & 0.2326(1) & -0.2283(3) & 3.6(1) \\ \mathrm{O}(3) & 0.5664(2) & 0.0883(1) & 0.4745(3) & 3.7(1) \\ \mathrm{O}(4) & -0.0990(2) & 0.0218(1) & 0.1626(3) & 5.8(1) \\ \mathrm{O}(7) & 0.0393(2) & 0.0286(1) & 0.5794(3) & 4.1(1) \\ \mathrm{O}(8) & -0.0804(2) & 0.1059(1) & 0.7877(3) & 3.1(1) \\ \mathrm{O}(9) & -0.2241(2) & 0.1442(1) & 0.6069(3) & 3.3(1) \\ \mathrm{N} & 0.3003(2) & 0.0945(1) & 0.5666(3) & 3.0(1) \\ \mathrm{C}(1) & 0.5283(3) & 0.1636(1) & 0.2369(4) & 2.4(1) \\ \mathrm{C}(2) & 0.4814(3) & 0.2254(2) & 0.1725(4) & 2.8(1) \\ \mathrm{C}(3) & 0.5171(3) & 0.2485(2) & 0.0184(4) & 2.8(1) \\ \mathrm{C}(4) & 0.6002(3) & 0.2076(2) & -0.0758(4) & 2.8(1) \\ \mathrm{C}(5) & 0.6457(3) & 0.1460(2) & -0.0124(4) & 3.3(2) \\ \mathrm{C}(7) & 0.4885(3) & 0.1422(2) & 0.4086(4) & 2.7(1) \\ \mathrm{C}(8) & 0.3520(3) & 0.1161(2) & 0.4016(4) & 2.9(2) \\ \mathrm{C}(9) & 0.3242(3) & 0.1428(2) & 0.7105(4) & 3.0(2) \\ \mathrm{C}(10) & 0.2664(4) & 0.1108(2) & 0.8631(4) & 4.2(2) \\ \mathrm{C}(11) & 0.2712(4) & 0.2146(2) & 0.6744(5) & 5.1(2) \\ \mathrm{C}(11) & 0.2712(4) & 0.2146(2) & 0.6744(5) & 5.1(2) \\ \mathrm{C}(12) & 0.0005(3) & 0.0516(2) & 0.2581(4) & 2.9(1) \\ \mathrm{C}(13) & -0.0397(3) & 0.1021(2) & 0.3633(4)$	Atom	x	y	z	$B_{ m eq}/{ m \AA}^2$
$\begin{array}{c} O(1) & 0.6774(3) & 0.5426(3) & 0.6784(3) & 3.4(1) \\ O(2) & 0.7843(3) & 0.5063(3) & 0.5217(3) & 3.6(1) \\ O(3) & 0.4591(3) & 0.0953(3) & 0.6805(3) & 3.8(1) \\ N & 0.2008(4) & 0.2315(4) & 0.3994(3) & 2.9(2) \\ C(1) & 0.5138(4) & 0.2410(4) & 0.5510(4) & 2.5(2) \\ C(2) & 0.5479(5) & 0.3474(4) & 0.6232(4) & 2.8(2) \\ C(3) & 0.6392(4) & 0.4365(4) & 0.6125(3) & 2.4(2) \\ C(4) & 0.6961(4) & 0.4161(4) & 0.5284(3) & 2.6(2) \\ C(5) & 0.6632(5) & 0.3110(4) & 0.4577(4) & 2.7(2) \\ C(6) & 0.5715(5) & 0.2242(4) & 0.4693(4) & 2.7(2) \\ C(7) & 0.4151(4) & 0.1439(4) & 0.5613(4) & 3.0(2) \\ C(8) & 0.2664(5) & 0.1886(5) & 0.5284(4) & 3.3(2) \\ C(9) & 0.0439(5) & 0.2585(5) & 0.3448(5) & 4.1(2) \\ C(10) & -0.0377(7) & 0.1501(8) & 0.3580(7) & 6.2(4) \\ C(11) & 0.0029(7) & 0.2947(7) & 0.2151(6) & 5.6(3) \\ \textbf{II} \\ O(1) & 0.4761(2) & 0.3098(1) & -0.0479(3) & 3.6(1) \\ O(2) & 0.6329(2) & 0.2326(1) & -0.2283(3) & 3.6(1) \\ O(3) & 0.5664(2) & 0.0883(1) & 0.4745(3) & 3.7(1) \\ O(4) & -0.0990(2) & 0.0218(1) & 0.1626(3) & 5.8(1) \\ O(5) & 0.1087(2) & 0.0387(1) & 0.1911(3) & 4.1(1) \\ O(6) & 0.0566(2) & 0.1494(1) & 0.4050(3) & 3.4(1) \\ O(7) & 0.0393(2) & 0.0286(1) & 0.5794(3) & 4.1(1) \\ O(8) & -0.0804(2) & 0.1059(1) & 0.7877(3) & 3.1(1) \\ O(9) & -0.2241(2) & 0.1442(1) & 0.6069(3) & 3.3(1) \\ N & 0.3003(2) & 0.0945(1) & 0.5666(3) & 3.0(1) \\ C(1) & 0.5283(3) & 0.1636(1) & 0.2369(4) & 2.4(1) \\ C(2) & 0.4814(3) & 0.2254(2) & 0.1725(4) & 2.8(1) \\ C(4) & 0.6002(3) & 0.2076(2) & -0.0758(4) & 2.8(1) \\ C(5) & 0.6457(3) & 0.1460(2) & -0.0124(4) & 3.3(2) \\ C(7) & 0.4885(3) & 0.1422(2) & 0.4086(4) & 2.7(1) \\ C(8) & 0.3520(3) & 0.1161(2) & 0.4016(4) & 2.9(2) \\ C(9) & 0.3242(3) & 0.1428(2) & 0.7105(4) & 3.0(2) \\ C(10) & 0.2664(4) & 0.1108(2) & 0.8631(4) & 4.2(2) \\ C(11) & 0.2712(4) & 0.2146(2) & 0.6744(5) & 5.1(2) \\ C(11) & 0.2712(4) & 0.2146(2) & 0.6744(5) & 5.1(2) \\ C(11) & 0.2097(3) & 0.1021(2) & 0.3633(4) & 2.4(1) \\ C(14) & -0.0722(3) & 0.0606(2) & 0.5184(4) & 2.9(1) \\ \end{array}$	I				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl	0.2451(1)	0.0216(1)	0.2380(1)	4.32(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1)	0.6774(3)	0.5426(3)	0.6784(3)	3.4(1)
$\begin{array}{c} \mathbf{N} & 0.2008(4) & 0.2315(4) & 0.3994(3) & 2.9(2) \\ \mathbf{C}(1) & 0.5138(4) & 0.2410(4) & 0.5510(4) & 2.5(2) \\ \mathbf{C}(2) & 0.5479(5) & 0.3474(4) & 0.6232(4) & 2.8(2) \\ \mathbf{C}(3) & 0.6392(4) & 0.4365(4) & 0.6125(3) & 2.4(2) \\ \mathbf{C}(4) & 0.6961(4) & 0.4161(4) & 0.5284(3) & 2.6(2) \\ \mathbf{C}(5) & 0.6632(5) & 0.3110(4) & 0.4577(4) & 2.7(2) \\ \mathbf{C}(6) & 0.5715(5) & 0.2242(4) & 0.4693(4) & 2.7(2) \\ \mathbf{C}(7) & 0.4151(4) & 0.1439(4) & 0.5613(4) & 3.0(2) \\ \mathbf{C}(8) & 0.2664(5) & 0.1886(5) & 0.5284(4) & 3.3(2) \\ \mathbf{C}(9) & 0.0439(5) & 0.2585(5) & 0.3448(5) & 4.1(2) \\ \mathbf{C}(10) & -0.0377(7) & 0.1501(8) & 0.3580(7) & 6.2(4) \\ \mathbf{C}(11) & 0.0029(7) & 0.2947(7) & 0.2151(6) & 5.6(3) \\ \textbf{II} \\ \textbf{O}(1) & 0.4761(2) & 0.3098(1) & -0.0479(3) & 3.6(1) \\ \mathbf{O}(2) & 0.6329(2) & 0.2326(1) & -0.2283(3) & 3.6(1) \\ \mathbf{O}(3) & 0.5664(2) & 0.0883(1) & 0.4745(3) & 3.7(1) \\ \mathbf{O}(4) & -0.0990(2) & 0.0218(1) & 0.1626(3) & 5.8(1) \\ \mathbf{O}(5) & 0.1087(2) & 0.0387(1) & 0.1911(3) & 4.1(1) \\ \mathbf{O}(6) & 0.0566(2) & 0.1494(1) & 0.4050(3) & 3.4(1) \\ \mathbf{O}(7) & 0.0393(2) & 0.0286(1) & 0.5794(3) & 4.1(1) \\ \mathbf{O}(8) & -0.0804(2) & 0.1059(1) & 0.7877(3) & 3.1(1) \\ \mathbf{O}(9) & -0.2241(2) & 0.1442(1) & 0.6069(3) & 3.3(1) \\ \mathbf{N} & 0.3003(2) & 0.0945(1) & 0.5666(3) & 3.0(1) \\ \mathbf{C}(1) & 0.5283(3) & 0.1636(1) & 0.2369(4) & 2.4(1) \\ \mathbf{C}(2) & 0.4814(3) & 0.2254(2) & 0.1725(4) & 2.8(1) \\ \mathbf{C}(3) & 0.5171(3) & 0.2485(2) & 0.0184(4) & 2.8(1) \\ \mathbf{C}(4) & 0.6002(3) & 0.2076(2) & -0.0758(4) & 2.8(1) \\ \mathbf{C}(5) & 0.6457(3) & 0.1460(2) & -0.0124(4) & 3.3(2) \\ \mathbf{C}(7) & 0.4885(3) & 0.1428(2) & 0.4086(4) & 2.7(1) \\ \mathbf{C}(8) & 0.3520(3) & 0.1161(2) & 0.4016(4) & 2.9(2) \\ \mathbf{C}(9) & 0.3242(3) & 0.1428(2) & 0.7105(4) & 3.0(2) \\ \mathbf{C}(9) & 0.3242(3) & 0.1428(2) & 0.7105(4) & 3.0(2) \\ \mathbf{C}(10) & 0.2664(4) & 0.1108(2) & 0.8631(4) & 4.2(2) \\ \mathbf{C}(11) & 0.2712(4) & 0.2146(2) & 0.6744(5) & 5.1(2) \\ \mathbf{C}(12) & 0.0005(3) & 0.0516(2) & 0.2291(4) & 2.9(1) \\ \mathbf{C}(13) & -0.0397(3) & 0.1021(2) & 0.3633(4) & 2.4(1) \\ \mathbf{C}(14) & -0.0722(3) & 0.0606(2) & 0.5184(4) & 2.9(1) \\ \end{array}$	O(2)	0.7843(3)	0.5063(3)	0.5217(3)	3.6(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(3)	0.4591(3)		0.6805(3)	3.8(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.2008(4)	0.2315(4)	0.3994(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	0.5138(4)		0.5510(4)	2.5(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.5479(5)	0.3474(4)		2.8(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	0.6392(4)		0.6125(3)	2.4(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	0.6961(4)	0.4161(4)	0.5284(3)	2.6(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	0.6632(5)	0.3110(4)	0.4577(4)	2.7(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	0.5715(5)	0.2242(4)	0.4693(4)	2.7(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)	0.4151(4)	0.1439(4)	0.5613(4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)	0.2664(5)	0.1886(5)	0.5284(4)	3.3(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0439(5)	0.2585(5)	0.3448(5)	4.1(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-0.0377(7)	0.1501(8)	0.3580(7)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(11)	0.0029(7)	0.2947(7)	0.2151(6)	5.6(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. ,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1)	0.4761(2)	0.3098(1)	-0.0479(3)	3.6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.2326(1)	-0.2283(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.0883(1)	0.4745(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.0990(2)	0.0218(1)		5.8(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(5)	0.1087(2)	0.0387(1)	0.1911(3)	4.1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(6)	0.0566(2)	0.1494(1)		3.4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0393(2)			4.1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.0804(2)	0.1059(1)	0.7877(3)	3.1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(9)	-0.2241(2)	0.1442(1)	0.6069(3)	3.3(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.3003(2)	0.0945(1)	0.5666(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)		0.1636(1)	0.2369(4)	2.4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.4814(3)	0.2254(2)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.5171(3)	0.2485(2)	0.0184(4)	2.8(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	0.6002(3)	0.2076(2)	-0.0758(4)	2.8(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.6457(3)		-0.0124(4)	3.3(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.6113(3)	0.1240(2)	0.1438(4)	3.3(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)			0.4086(4)	2.7(1)
$\begin{array}{cccccccccc} C(9) & 0.3242(3) & 0.1428(2) & 0.7105(4) & 3.0(2) \\ C(10) & 0.2664(4) & 0.1108(2) & 0.8631(4) & 4.2(2) \\ C(11) & 0.2712(4) & 0.2146(2) & 0.6744(5) & 5.1(2) \\ C(12) & 0.0005(3) & 0.0516(2) & 0.2291(4) & 2.9(1) \\ C(13) & -0.0397(3) & 0.1021(2) & 0.3633(4) & 2.4(1) \\ C(14) & -0.0722(3) & 0.0606(2) & 0.5184(4) & 2.9(1) \\ \end{array}$	C(8)		0.1161(2)	0.4016(4)	2.9(2)
$\begin{array}{ccccccc} C(10) & 0.2664(4) & 0.1108(2) & 0.8631(4) & 4.2(2) \\ C(11) & 0.2712(4) & 0.2146(2) & 0.6744(5) & 5.1(2) \\ C(12) & 0.0005(3) & 0.0516(2) & 0.2291(4) & 2.9(1) \\ C(13) & -0.0397(3) & 0.1021(2) & 0.3633(4) & 2.4(1) \\ C(14) & -0.0722(3) & 0.0606(2) & 0.5184(4) & 2.9(1) \\ \end{array}$	C(9)		0.1428(2)		
$\begin{array}{ccccc} C(11) & 0.2712(4) & 0.2146(2) & 0.6744(5) & 5.1(2) \\ C(12) & 0.0005(3) & 0.0516(2) & 0.2291(4) & 2.9(1) \\ C(13) & -0.0397(3) & 0.1021(2) & 0.3633(4) & 2.4(1) \\ C(14) & -0.0722(3) & 0.0606(2) & 0.5184(4) & 2.9(1) \\ \end{array}$		0.2664(4)		0.8631(4)	4.2(2)
$\begin{array}{cccc} C(12) & 0.0005(3) & 0.0516(2) & 0.2291(4) & 2.9(1) \\ C(13) & -0.0397(3) & 0.1021(2) & 0.3633(4) & 2.4(1) \\ C(14) & -0.0722(3) & 0.0606(2) & 0.5184(4) & 2.9(1) \end{array}$					
$\begin{array}{cccc} C(13) & -0.0397(3) & 0.1021(2) & 0.3633(4) & 2.4(1) \\ C(14) & -0.0722(3) & 0.0606(2) & 0.5184(4) & 2.9(1) \end{array}$					
C(14) $-0.0722(3)$ $0.0606(2)$ $0.5184(4)$ $2.9(1)$					
C(15) = -0.1299(3) = 0.1083(2) = 0.6502(4) = 2.8(1)	C(15)	-0.1299(3)	0.1083(2)	0.6502(4)	2.8(1)

esting to elucidate.

In II both the ammonium N and the catechol oxygens show hydrogen-bond donating characteristics as seen from Table 5. Their hydrogen atoms are accepted by the O atoms of the hydrogen tartrate ions. The ammonium N donates a hydrogen atom to the hydroxyl oxygens O-(6) and O(7) to form a bifurcated hydrogen bond, but it donates no hydrogen atom to the carboxylate group. No hydrogen bond between the carboxylate group and the ammonium N is also observed in adrenaline hydrogen tartrate. ¹⁴⁾ In the crystal each isoprenalium cation is

Table 3. Bond Lengths and Angles with Their esd's in Parentheses

	I	II
	l/Å	
0(1) 0(2)		
O(1)-C(3)	1.375(5)	1.366(4)
O(3)-C(7)	1.424(5)	1.428(4)
$N-C(9) \ C(1)-C(6)$	1.519(5)	1.516(4)
	1.371(5)	1.386(4)
C(2)-C(3)	1.397(5)	1.382(4)
C(4)-C(5)	1.376(5)	1.378(4)
C(7)-C(8)	1.512(6)	1.527(4)
O(2)-C(4)	$1.364(5) \\ 1.498(5)$	$1.375(4) \\ 1.507(4)$
$egin{array}{l} { m N-C(8)} \\ { m C(1)-C(2)} \end{array}$	1.395(6)	1.390(4)
C(1)-C(2) C(1)-C(7)	1.530(0) $1.510(5)$	1.536(4) $1.516(4)$
C(3)-C(4)	1.395(5)	1.405(4)
C(5)-C(4) C(5)-C(6)	1.387(6)	1.388(4)
C(9)-C(10)	1.493(8)	1.514(5)
O(4)-C(12)	1.433(0)	1.312(4)
O(4) - O(12) O(8) - C(15)		1.235(4)
C(14)-C(15)		1.536(4)
O(6)-C(13)		1.405(4)
C(12)-C(13)		1.521(4)
C(12) $-C(13)C(14)$ $-C(15)$		1.521(4) $1.536(4)$
	φ/°	$\frac{1.550(4)}{\phi/^{\circ}}$
C(1)-C(2)-C(3)	$^{arphi/}_{120.7(4)}$	$^{arphi\prime}_{121.3(3)}$
C(2)- $C(1)$ - $C(6)$	119.4(4)	119.2(3)
C(2)- $C(1)$ - $C(7)$	121.4(4)	118.8(3)
C(2)- $C(3)$ - $C(4)$	118.4(4)	119.0(3)
O(1)-C(3)-C(4)	117.0(4)	117.7(3)
O(1) $O(3)$ $O(4)O(1)$ - $O(3)$ - $O(2)$	124.6(5)	123.3(3)
O(2)-C(4)-C(3)	115.9(4)	117.0(3)
O(2)- $C(4)$ - $C(5)$	123.2(5)	123.4(3)
C(3)-C(4)-C(5)	120.2(3) $120.9(4)$	119.6(3)
C(4)-C(5)-C(6)	119.7(5)	120.9(3)
C(6)-C(1)-C(7)	119.3(5)	122.0(3)
O(3)-C(7)-C(8)	104.3(4)	108.6(2)
C(8)-N-C(9)	117.2(4)	117.3(3)
N-C(9)-C(11)	107.0(5)	110.3(3)
C(1)-C(6)-C(5)	121.0(5)	119.9(3)
O(3)-C(7)-C(1)	113.3(4)	112.6(2)
C(1)-C(7)-C(8)	114.8(4)	108.4(2)
N-C(8)-C(7)	110.3(3)	113.3(3)
N-C(9)-C(10)	110.3(3) $111.3(4)$	108.5(3)
C(10)-C(9)-C(11)	111.9(4) $112.9(6)$	112.3(3)
O(4)-C(12)-O(5)	112.0(0)	12.3(3) $124.1(3)$
O(4)-C(12)-O(3) O(6)-C(13)-C(12)		112.7(2)
C(12)-C(13)-C(14)		108.8(2)
O(7)-C(14)-C(13)		109.2(2)
C(13)-C(14)-C(15)		103.2(2) $110.6(2)$
O(8)-(15)-O(9)		127.4(3)
O(4)-C(12)-C(13)		110.6(3)
O(6)-C(13)-C(14)		10.3(3) $107.4(2)$
O(7)-C(14)-C(15)		110.1(2)
O(8)-C(15)-C(14)		116.2(3)
O(5)-C(12)-C(13)		125.3(3)
O(9)-C(15)-C(14)		116.4(3)

linked through hydrogen bonds to six hydrogen tartrate anions to form a three-dimensional network [Fig. 2(b), Table 5].

The carbon chain of the hydrogen tartrate anion takes

Table 4. Selected Torsion Angles of Isoprenaline Cations and Some Related Compounds Found in the Crystals

	$\mathbf{I}^{\mathbf{a})}$	$\mathbf{II}_{\mathrm{p})}$	$III^{c)}$	$\mathbf{IV}^{ ext{d})}$	$\mathbf{V}^{\mathrm{e})}$	$\mathbf{VI}^{\mathrm{f})}$
	τ/°	τ/°	τ/°	τ/°	τ/°	$\tau/^{\circ}$
$\tau_1:C(2)-C(1)-C(7)-C(8)$	63.5(5)	74.7(4)	-77.2(8)	-96.4(6)	179.2(3)	-90.4(4)
τ_2 :C(1)-C(7)-C(8)-N	60.9(5)	-178.8(2)	174.6(6)	171.6(4)	-179.4(2)	167.5(2)
$\tau_3:C(7)-C(8)-N-C(9)$	169.7(4)	45.6(4)	-156.3(6)	157.9(5)		
τ_4 :C(8)-N-C(9)-C(11)	-177.9(5)	-179.2(3)	176.8(6)			

- a) Isoprenaline hydrochloride (this work). b) (S)-Isoprenaline hydrogen (2R,3R)-tartrate (this work).
- c) Isoprenaline sulphate dihydrate. D) (S)-Isoprenaline hydrogen (2R,3R)-tartrate (this work). c) Isoprenaline sulphate dihydrate. There are two independent molecules with similar conformations in the crystal. The values refer to molecule A. d) Adrenaline. Adrenaline hydrogen tartrate. Adrenaline. Noradrenaline.

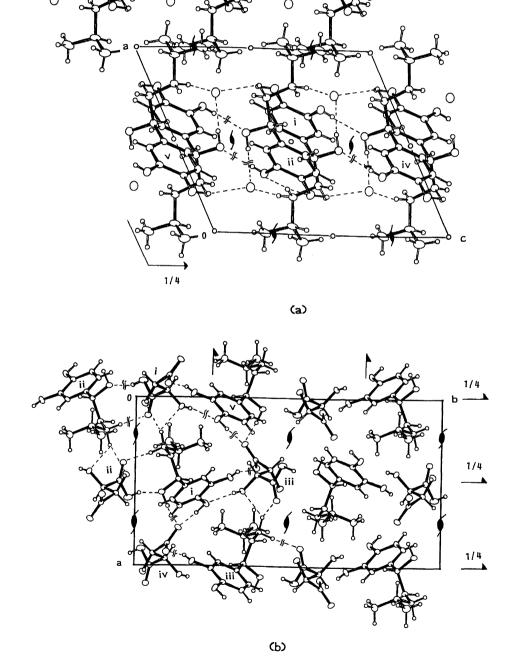


Fig. 2. The molecular arrangements in the crystals of I (a) and II (b). Intermolecular hydrogen bonds are shown by broken lines. The symmetry codes are given in Table 5.

Table 5. Geometry of Hydrogen Bonds

Donor(D)	Acceptor(A)	D···A	H···A	D-H···A
(-)		$l/ m \AA$	$l/ m \AA$	$\phi/^{\circ}$
I				
N^i	Cl^{i}	3.150(4)	2.11(8)	173(7)
N^i	$O(1^{ii})$	3.070(6)	2.19(6)	165(5)
N^i	$O(2^{ii})$	2.965(6)	2.38(6)	122(5)
$\mathrm{O}(1^{\mathrm{i}})$	$O(3^{iv})$	2.706(6)	2.0(1)	176(11)
$O(2^{v})$	Cl^i	3.044(4)	2.22(9)	164(8)
$O(3^{ii\acute{1}})$	Cl^{i}	3.093(4)	2.3(1)	165(5)
II				
N^i	$O(6^{i})$	3.073(4)	2.38(3)	128(2)
N^i	$O(7^i)$	3.032(4)	2.11(3)	158(3)
N^i	$O(5^{ii})$	2.917(4)	1.97(4)	172(4)
$O(1^{v})$	$O(8^i)$	2.733(3)	1.83(4)	163(4)
$O(2^i)$	$O(9^{iv})$	2.638(3)	1.73(4)	170(4)
$O(3^i)$	$O(9^{vi})$	2.682(3)	1.73(4)	165(4)
$O(4^{ii})$	$O(3^i)$	2.635(4)	1.70(4)	162(4)
$O(6^{iii})$	$O(2^i)$	2.804(3)	2.05(3)	155(3)
$O(7^i)$	$O(8^i)$	2.583(3)	2.00(4)	125(3)

Symmetry codes: for I, (i) x,y,z; (ii) 1-x, 1-y, 1-z; (iii) 1-x, -y, 1-z; (iv) 1-x, 1/2+y, 3/2-z; (v) 1-x, -1/2+y, 1/2-z; for II, (i) x,y,z; (ii) 1/2-x, -y, 1/2+z; (iii) 1/2+x, 1/2-y, -z; (iv) 1+x, y, -1+z; (v) -1/2+x, 1/2-y, 1-z; (vi) 1+x, y, z.

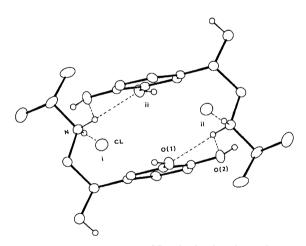


Fig. 3. The dimeric unit of I. The broken lines denote intermolecular hydrogen bonds.

a trans zig-zag conformation; C(12)–C(13)–C(14)–C(15)–172.4(3)°. The conformation of the carbonyl O(5) with respect to O(6) deviates from a cis: O(5)–C(12)–C(13)–O(6) 20.0(5)°. On the other hand, the carboxylate O(8) takes a cis conformation to O(7): O(7)–C(14)–C(15)–O(8) –6.2(5)°, which is favored by intramolecular hydrogen bond between the oxygen atoms.

The orientation of the phenyl ring to its side chain shows the usually observed perpendicular-trans conformation, which is characterized by τ_1 and τ_2 . However, τ_3 of II, C(7)–C(8)–N–C(9), has a peculiar value of 45.6-(4)° in comparison to the others. The observed conformation is consistent with the hydrogen bonds involving

O(3) and N. The observed value is close to 60° for a calculated local minimum. The global minimum for τ_3 occurs at 175° which is close to the observed values for the other compounds. The difference in steric energies at τ_3 =60 and 175° is estimated to be only 3.3 kJ mol⁻¹. The height of the energy barrier between the conformations is 17.6 kJ mol⁻¹.

 au_1 of adrenaline hydrogen tartrate shows a peculiarity. While its phenyl ring to side chain conformation is trans, adrenaline and the other compounds show perpendicular conformation. The presence of the hydrogen tartrate anion in both situations seems to be the underlying factor for the observed 'outlier' conformations. This strengthens the notion that intermolecular hydrogen bonds play an important role in shaping the conformation in these catecholamines, however, the observed conformations are close to either a local or global minimum in steric energy.

References

- 1) G. Meletyeva and L. Antova, "Pharmaceutical Chemistry," Mir Publishers, Moscow (1988), pp. 434—452.
- 2) M. Mathew and G. J. Palenik, J. Am. Chem. Soc., 93, 497 (1971).
- 3) R. B. Barlow, O. Johnson, J. A. K. Howard, D. C. Walton, and G. Koelliner, *Acta Crystallogr.*, *Sect. B*, **45**, 397 (1989).
- 4) J. J. Urban, C. J. Cramer, and G. R. Famini, *J. Am. Chem. Soc.*, **114**, 8226 (1992).
- 5) D. Carlstrom, R. Bergin, and G. Falkenburg, Q. Rev. Biophys., 3, 257 (1973).
- 6) J. F. Griffin and W. L. Duax, "Molecular Structure and Biological Activity," Elsevier Science Publishing, New York (1982), pp. 117—133.
- 7) "SIR," M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidovi, R. Spagna, and D. Viterbo, *J. Appl. Crystallogr.*, **22**, 389 (1989).
- 8) "International Tables for X-Ray Crystallography," Kynoch Press, Birmingham (Present Distributor Kluwer Academic Publishers, Dordrecht) (1974), Vol. IV, pp. 72—98.
- 9) "TEXSAN. Single Crystal Structure Analysis Software. Version 5.0," Molecular Structure Corporation, The Woodlands, Texas (1989).
- 10) T. Ashida, "HBLS-V and DAPH. The Universal Crystallographic Computing System-Osaka," The Computation Center, Osaka Univ. (1973).
- 11) S. Fujii, "MOLCON. The Universal Crystallographic Computing System-Osaka," The Computation Center, Osaka Univ. (1979).
- 12) N. L. Allinger. "MM2-Molecular Mechanics Version 2," Department of Chemistry, Univ. of Georgia, (1980).
- 13) Tables of anisotropic thermal parameters for non-hydrogen atoms, bond lengths and angles involving the hydrogen atoms, and structure factors have been deposited as Document No. 66043 at the Office of the Editor of Bull. Chem. Soc. Jpn.
- 14) D. Carlstrom, *Acta Crystallogr.*, *Sect. B*, **29**, 163 (1972).

15) A. M. Anderson, Acta Chem. Scand. B, **29**, 243 16) A. M. Anderson, Acta Chem. Scand. B, **29**, 871 (1975).